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On the Dimension of Bivariate Superspline Spaces 

By Charles K. Chui and Tian Xiao He* 

Abstract. A bivariate piecewise polynomial function of total degree d on some grid 
partition A that has rth order continuous partial derivatives everywhere may have 
higher-order partial derivatives at the vertices of the grid partition. In finite element 
considerations and in the construction of vertex splines, it happens that only those func- 
tions with continuous partial derivatives of order higher than r at the vertices are needed 
to give the same full approximation order as the entire space of piecewise polynomials. 
This is certainly the case for d > 4r + 1. Such piecewise polynomial functions are called 
supersplines. This paper is devoted to the study of the dimension of certain superspline 
spaces. Since an exact dimension would have to depend on the geometric structure of 
the partition A, we will give only upper and lower bounds. We will show, however, 
that the lower bound value is sharp for all quasi-crosscut partitions; and under suitable 
assumptions on r and d, the upper and lower bounds agree on both type-1 and type-2 
arbitrary triangulations. In addition, a dimension criterion which guarantees that the 
lower bound gives the actual dimension is given. 

1. Introduction. Let Q be a closed simply connected polygonal region in R2 

and i\ a partition on Q consisting of straight line segments, called edges. Then i\ 
is called a rectilinear grid partition of Q, and the points of intersection of the edges 
are called the vertices (or grid points) of i\. The (closed) polygons which are the 
closures of the components of the complement of i\ relative to Q are called the 
components of the partition. For any two nonnegative integers r and d, the vector 
space Sdr = Sdr(A) = Sdr (, 9) of functions f E Cr(9) such that the restrictions 
of f to each component of the grid partition are in lrd, the space polynomials in 
two variables of total degree not exceeding d, is called a bivariate spline space. 
In this paper, we are interested in the study of the dimension of the subspace 
Sdr = Sdr (A) = Sdr (A, 9) of functions f in Sdr which have all partial derivatives of 
order at least 2r relative to 9 at each (interior or boundary) vertex of the partition. 
The subspace Sdr is called a superspline space in [2]. It is well known that when i\ 
is a (regular) triangulation, the approximation order of Sdr is the same as that of 
the full space Sd, namely d + 1, provided that d > 4r + 1 (cf. [2], [9], [10]), and in 
fact bivariate supersplines with minimal supports in Sd (called vertex splines) are 
shown to form a basis of Sd and can be constructed explicitly (cf. [2]). 

It is also well known that in the study of dim Sd, the dimension of the full 
spline space Sd, it is in general not possible to give an exact formula for dim Sd 
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in terms of the number of vertices, edges, etc., since the dimension might change 
with the exact geometric structure of A (cf. [3], [4], [5]). Hence, sharp lower and 
upper bounds are important (cf. [6], [7]). The paper is devoted to the study of 

dimSdl, the dimension of the superspline subspace Sd of Sd. In particular, we 
will derive lower and upper bounds for dim Sd (A) for an arbitrary rectilinear grid 
partition A. If A is a quasi-crosscut partition as introduced in [3], we will show 
that the dimension of Sdr is given by the lower bound value. Here, a quasi-crosscut 
partition is a rectilinear partition which consists only of rays and crosscuts. Here, 
a ray is a straight line that starts at an interior vertex of A and terminates at a 
boundary vertex, and a crosscut is a straight line that joins two boundary vertices, 
and hence, divides the region Q into two components. We will also show that 
for a type-i triangulation A (that is, a triangulation obtained by drawing in all 
diagonals of positive slopes on a not necessarily uniform rectangular partition), the 
lower bound value also gives the exact dimension provided that d > 3r, and that 
for a type-2 triangulation A (that is, a triangulation obtained by drawing in both 
diagonals of each rectangular component of an arbitrary rectangular partition), the 
same conclusion holds provided that d > [(8r + 1)/3]. 

The proofs in this paper can be easily extended to study the dimension of the 
more general superspline space Sd'p of functions in Sd which have all partial deriva- 
tives of order p at each (interior or boundary) vertex of A. These results will be 
stated in Section 6. The notion of Sd'p was introduced by Schumaker [8], where 
the dimension of this space is determined for the special case d > 1 + max(2p, 4r). 
Note that Sd'7 = Sd and sd2r = S' 

2. Main Results. Let EI denote the number of interior edges and VI the 
number of interior vertices of an arbitrary rectilinear grid partition A of a closed 
simply connected polygon Q. Label the vertices A1, . .. , AV, in some order, and let 
ei be the number of edges with different slopes attached to Ai. In addition, for 
each i = 1, . . . , VI, denote by ji the number of edges with different slopes attached 
to Ai but not Aj, j < i. Of course ei depends on the ordering of the vertices. 
The notation here follows that introduced by Schumaker [7] in the study of upper 
bounds of dim Sdr. Also, set 

d-r 

(1) Ni= >E (r+j+1-(d-2r)ei)+ 
j=r+l 

and 

d-r 

(2) gi = E (r +j +1 -(d -2r)ei)+. 
j=r+l 

We have the following result. 

THEOREM 1. For O < d < 2r, 

(3) dimSr(A) = (+ 2) 



THE DIMENSION OF BIVARIATE SUPERSPLINE SPACES 221 

the dimension of lrd. Let 

Dd = dimS()_ (Sd + 2) 

(4) = Er [ (d + 1 ) -2 ( ) r + l r + ( (3r-d+l)+)] 

+I [(d+2)_- (2r+2)] 

Then for d > 2r > O, 

VI VI 

(5) ZNi<Dr < Ni. 
i=1 

Suppose now that the rectilinear grid partition is a quasi-crosscut partition A, 
consisting of L crosscuts. Let li denote the number of crosscuts or rays that pass 
through or initiate from Ai, i = 1, ... , VI. We have the following result. 

THEOREM 2. Let 

(6) E~~d :=[( r +l) _2r + 1 (r -(d -2r)+ +1)+) (6) E 

and 

d - (r + 1 + 1-( -r -r) ( d - 2r) (2 + 2 ) } 
(7) drd+2 2 

Then 

(8) dimSdr(Ac) = 2 LEd + Fd (li) 

In particular, for d < 2r, 

dimS'r(AC~) d= (d 2) diSd()= 2) 

the dimension of 7rd 

Next, we consider the following important consequences of these two results. Let 

OR = [a, b] x [c,d] 

anda = xo < < xm+l = b, c = yo < < Yn+ =d. Partition9Rfirstby 
drawing in the vertical lines x -xi = 0 and horizontal lines y -yj = 0, i = 1, ... , m 

and j = 1,..., n. Then by drawing in the diagonals with positive slopes to the 

rectangles [xi, xi+1] x [yj, Yj+1], we obtain a type-i triangulation A (' Of QR; and 

by drawing in both diagonals to each [xi, xi+,] x [yj, Yj+1], we obtain a type-2 

triangulation z\mn) of PR. The triangulations A()1 and .A will be said to be 
uniform if xi+, - xi = xi - xi-1 and yj+l - yj=Yj - Yj-1 for all i = 1, ...,m and 
j-=1, ... .,n. As a consequence of Theorem 1, we have the following two results. 
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COROLLARY 1. Let d > 3r. Then 

dim Sr (A(')) = mn[d2 - 3rd + r(r - 3)/2] 

(9) + (m + n)[d2- (2r - l)d - r2- 3r] 
+ d2 _(r - 2)d - (r2+ 3r - 2)/2. 

COROLLARY 2. Let d > [(8r + 1)/3]. Then 

dim Sd (m) 

=mn [6( 
d 

+1) _12 r +1 +6(3r 
- d +j)+ 

d +2\ 2r +2\ d-r 

-2( + 2+ E (r+j+1-2(d-2r))+] 

'~~' ~~ j=r+l 

(10) +(m+n) [5(d-r+1) 10 r + 1 
+5 ((3r - d +)+) 

(10)~~ ~ ~ ~ ~~~ 2 ) (2 2 2 - 

+( 2 +4(d 2+1)_(r1+4 ((3r-d+1)+) 
d-r 

+ E [r + j + 1 - 2(d -r2r)]+ 
j=r+ 1 

When A('1) and A$(2) are uniform type-i and type-2 triangulations, respectively, 
they become quasi-crosscut partitions of QR consisting only of crosscuts. Hence, 
Theorem 2 applies, and there are no longer any restrictions on the values of d and 
r as follows. 

COROLLARY 3. Let z\(') be a uniform type-i triangulation of DR. Then for 
d > 2r, 

dim Sdr (4) 

= (+ 2 )+mn [3 ((d r+1) -2 (r+) +(3r-d+)+ 

(11)~~~~ ( 2) + ( 2 )2 + E (r+j+ 1 3(d-2r))+] 
j=r+l 

+ (2m +2n +) [d1) ) 2 ( 1)+ 
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In addition, for d < 2r, 

dim 'r(A(t) ) d +2) 

COROLLARY 4. Let A\t2) be a uniform type-2 triangulation of OR. Then for 
d > 2r, 

dim Sd (mnA) 

= (d+2) +mn [6(d2+1) -12(r+2) 

+ 6 (3r-d+1)+ -2 d)+)2 +2 ( 2 ) 

d-r 

+ , (r +j -1 -2(d -2r))+ 
j=r+l 

d-r 

+ E (r+j-1-4(d-2r))+ 
j=r+ 1 ~ ~ 2r)+ 

(12) j=r+l 

+(m+n) 5 (d r+1 10 / r+ 1 +5 (]3r -d+ 1)+ 

- d2) + (2 ) + E (r+j+1-2(d-2r))+] "' ~~~~~ j3=r+1 

+ [(2r+2) +4 (d- r+1) 8 (r+1) (d+2) 

((3r d +1)+) d-r 

j=r+l 

In addition, for d < 2r, 

~di r (A(2) =(d + 2) 

3. Key Lemma. We will first derive the dimension formula for the superspline 
space Sd (Ao), where AO is a rectilinear grid partition of Q consisting of exactly one 
interior vertex A such that all the interior edges of AO connect A to the boundary 
of Q. Let AiA, i = 1,... ,no, be these edges arranged in the counterclockwise 
direction, where A1,-.. , An are boundary vertices of AO, and let No be the number 
of edges among A1A, . . ., An. A having different slopes. In Figure 1, for example, 
no = 6 and No = 4, and there are 11 boundary vertices, where those not connected 
to A are not labelled. Denote by Ri, i = 1, ... , no, the polygonal component whose 
boundary consists of both of the edges AiA and Aqi-A, where Ao := An.. The 
following lemma will be used in the proofs of Theorems 1 and 2. 
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AAA 

dim Sdr (Z\S) 

=(d+2) +nO[ (d 2 +1)2-2(r+211) +((r-(rd-2(r)++ 1)+ )] 

In particular, if 0 < d < 2r, then 

(14) dimrSd(z\?)= (d2A) 

if 2r <d?3r, then 

dimS( )= ( 2r + 2) [ (d-r + 1)2(r+ 1) (3r -d + 1)] 

d-r 

+ r [r+j+l-No(d-2r)]+; 
j=r+ 1 

if 3r <d?<4r, then 

dimS(o) = (2 r+2 )+ [(d-r + 1 )2 (r+1)] 

d-r d +2 2rd-r 

+ E [r + j + r+1-No(d-2r)]+; 
j=r+=1 

and if d> 4r, then 

dimSd((O o) = (2r+2) +nO [(d + 2) -2 (r + )] 

Proof Without loss of generality, we assume that the interior vertex A is located 
at the origin and that the equation of each edge ALA, i = 1,... ,no, is given by 
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y + aix = 0, where ai $ 0. Let s E Sd(Ao), and set pi sloi - sl. Hence, 

Pi E lrd with P1- 0. Following [6], we write 

d-r j 

(15) Pi:E Ci-l,jk ?)k 
j=1 k=1 

where 

SnePk 

(X, 
Y) 

:= 
xik 

(y + 

aiX)r+k Since p,-O and s E Sdr (AO), we have, for each i = 2, ..., 

dr+m 

4yi 9Xr+m-1i (0) 0 

where I = O,.. , r + m and m = 1, ... , r, so that the representation of pi in (15) 
becomes 

d-r j 

(16) Pi- E E Ci-l,jkjkik 
j=r+1 k=1 

If d < 2r, then it is clear that pi- 0, i = 2,...,no, so that 

8 -sll E ird, 

and this proves the conclusion in (14). Hence, we may now assume that d > 2r, 
and under this assumption, (13) can be simplified to be 

dim Sdr (Ao) 

(17) ( 2 2)+2[( 2r+1)2(r+1)+((3r-d+1)+)] 
d-r 

+ E |r + j + 1 - No(d-2r)]+. 
j=r+1 

We are now ready to apply the "conformality condition" (cf. [1]) of s at 0 by 
using the representations of the polynomial pieces Pi in (16), yielding the following 
homogeneous system of (d-2r)(d+2r+3)/2 linear equations in no [( d-r+1 )_( r+1)] 

unknowns: 

(18) Hc = O, 

where 
C = (c+1T ... IC r)T, 

Cj :=(Cljjl ... I Cljl I .. * Cnojj I .. * oCnojl )T, 

and 
H H1+1 

H = Hr+2 
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Here, for each j = r + 1,.. , d-r, Hj is an (r + j + 1) x (noj) matrix of the form 
Hj = [Hjl ... Hj,O] with 

1 

Hii = ( )i2 1r,r+j-l i=1...,no. 

(r+j)r+j (r+ij-1)r+j-1 r+1r+ 

Before studying (18), we still have to incorporate the C2r condition of the spline 
function s at A1, .. ., A,,. That is, the polynomials pi, i = 1,*.* no, with Pn0+i1 

p=- 0, must satisfy 
#ir+m 

(19) 9ylrxr+m-l (Pi+i - pi)(Ai) = 0 

for I = 0,...,r+m, m = 1,...,r, and i = 1,..., no. Using the formulation of pi in 
(16), it is clear that (19) becomes 

d-r 

Xi Cijk = 0, 
j=r+1 

d-r 

Z (j - k)XjCijk = 0, 
j=r+l 

d-rT 

,(j -k) ..(j - r+1)Xjijik =0, 

j=r+l 

where k = 1,. .., r and i = 1, ..., no; and in matrix form: 

(20) Qocik = o, 

Cik := (Ci,r+1,k, Ci,r+2,k, ..Ci,d-r,k) 

and 
r+1 Xr+2 d-r 

xi x. ... xi 

(r -k + 1)xr+l (r -k + 2) Xr+2 . .. (- +(d2)xd-r 

Q O = ......................................... ...................... 

(r-k+1)! r+1 (r-k+2)! r+2 (r-k+(d-2r))! d-r 
1! Xi 2! Xi ... (d-2r)! Xi - 

We now apply elementary row operations to the (r - k + 1) x (d - 2r) matrix Qo as 
follows. For I = r - k, . . ., 3, 2 consecutively, we add the (I - 1) multiple of the lth 
row to the (I + 1)st row of Qo yielding Q1. Next, for I = r - k, .. ., 4, 3 consecutively, 
we add the (I - 2) multiple of the Ith row to the (I + 1)st row of Q1 yielding Q2, 

etc. This procedure is performed until Qr-k-l is obtained, and Eq. (20) is now 
reduced to 

(21) Qr-k- ICik = ? 
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where 

+r 1 r + 2 Xd- r 

Q(r-k1 
+ l+ (r-k+2)xi ..* (d-r-k)iT 

Qr-k-1 = (r-k + 1)24+1 (r-k + 2)24+2 ... (d-r-k)24-T 
* ............................................ 

(r - k + 1) rkXr+1 (r - k + 2)r-kXr+2 (d.-.r.-.k)r-kXd - 

It is clear that Qr-k-1 has full rank; that is, 

qk := rankQr-k-1 = r-k + 1-(3r-k-d + 1)+. 

Hence, Eq. (20) or (21) is equivalent to the linear relation 

d-r-qk 

(22) Cijk = E bildkCilk, 
L=r+l 

where j = d-r-qk + 1,...,d-r; k = 1,...,r; and i = 1,...,no. Note that if 
d - r - qk < r, then the summation in (22) is an empty sum, and these Cijk are all 
equal to zero. In any case, the relation in (22) can be substituted into the linear 
system (18) to yield the following system of linear equations: 

(23) H'c' = 0, 

where c' = (c'T C,.. .,c r)T with c'j = cj forj= r + 1, .. ., d-2r as in (18), and 
for j = d-2r +1, . .,d-r, 

c = (Cl,jj ... Cl,j,2r+j-d+ 1 *... *J Cno0, j,j * * * Cno,j,2r+j-d+1) 

The formulation of H' depends on whether d > 3r + 1 or 2r < d < 3r. (Recall that 
for 0 < d < 2r, we have already established (14).) 

Case (i). Let d > 3r + 1. Then 

Hr+i 0 
0 

0 
H = Hd-2r 

d-2T+1 d-2T+1 
0 

BT d1 ... B d-r . B r Hd-r r-T d-2r Bd-r-1 
where Hr+1, , Hfd-2r have been introduced in defining the coefficient matrix H 
in (18). The other block submatrices in H' are defined as follows: 

Hj = [Hjl * Hjno] 

where Hji = [huv] is (r + j + 1) x (j - ,), with ,u := 2r + j - d, and 

r(+3' vaU-V for 0 < v < u < r + j, 

huv =l 0 for 0 < u < v < j - -1; 

and B= [B31 B3B1], where B3i is an (r + j + 1) x I block defined by 

li l[ B?; 
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with BAii = [.J6] being an (r + it + 1) x ts block with entries 

=X j ; (r+IA-v)&I- for 0< v < u < r + ,u, 

0t t O for O< u <v <p -1. 

Case (ii). Let 2r < d < 3r. Then 

Hr+1 I 
H'- Dr+1 r+2 0 

r ... *Ddr - 
r+1 . d-r-1 Hd-r 

where Hr+l, Hd-r have been introduced in case (i), and Da = [Dj1.--D1a I 
with Di being an (r + j + 1) x (j - ,u) block defined by 

and Db = [duv] an (r + is + 1) x (j - 1) block with entries 

= 5 + (2r+I-L-v+1)a&u-v for 0 < v < u < r + it, 

10 for0<u<u< j-l-1. 

Note that in the entries of B3 and bi, the coefficients P come from the linear 
relation (22). 

To determine the dimension of the null space of the linear system (23), we 
will compute the rank of H'. First, by referring to the proof of Theorem 2.1 
in Schumaker [6], we have, for j > r + 1, 

rankHj =min(r+j+1,Noj) =r+j+1 

and 
rank Hj = min(r + j + 1, No(d - 2r)) 

=r+j+1-[r+j+1-No(d-2r)]+. 

Hence, for d > 3r + 1, we go to case (i) and conclude that 

d-2r d-r 

rank H'= E rank Hj + E rank Hj 
j=r+1 j=d-2r+1 

d-2r d-r 

= E (r+j+1)+ E (r+j+1-[r+j+1-No(d-2r)]+) 
(24) j=r+1 j=d-2r+l 

d-r d-r 

= E (r+j+1)- E [r+j+l-No(d-2r)]+ 
j=r+1 j=d-2r+1 

(d +2)( 2 2 ) d-r 
Z :[r+j+l-No(d-2r)]?, 

j=r+l 

where the lower limit of summation is changed from d - 2r + 1 to r + 1 since No > 2 
and d > 3r+1. 
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For 2r < d < 3r, we go to case (ii) and conclude that 

d-r 

rank H' = E rank Hj 
j=r+1 

d-r 

Z ((r+j+1)-[r+j+1-No(d-2r)]+) 
j=r+1 

(d + 2 )(2r + 2 d-r 
Z E[r+j+1-No(d-2r)]+, 

j=r+l 

which is identical to (24). That is, for all d > 2r, by unifying cases (i) and (ii), the 
null space of the matrix transformation H' (or equivalently the solution space of 
(23)) has dimension 

[(d-r+l) -2 (r+1) + ( (3r-d+1)+)] -rankH' 

= (2r+ 2 d+[( d r+) 2(r+l) +((3r-d+1)+)] 

+ E [r+j+1-No(d-2r)]+ (d2 ) 
j=r+1 

This is the number of free parameters in s - s1, where -sl, E Xd, for any super- 
spline function s E Sd(Ao), d > 2r. Hence, we have established the formula (17), 
and therefore (13) for any d and r, completing the proof of the lemma. 

4. Proof of Theorem 1 and Its Consequences. Our proof of Theorem 1 
will depend on the dimension formula for a rectilinear grid partition Al which is 
somewhat more general than the grid partition AO studied in the previous section. 
More precisely, let A1 consist of at most one interior vertex and EI interior edges, 
such that if Al does contain an interior vertex A, then there are no polygonal 
components , . .. , XQ,o with A as their common vertex, and the notation such 
as Ai and No introduced in Section 3 will also be used here. Note, in particular, 
that EI > no, and two examples of A1 are illustrated in Figure 2: the one on the 
left without an interior vertex and the one on the right consisting of an interior 
vertex A. Let e = 0 or 1 denote the number of interior vertices of Al . We have the 
following lemma. 

A3 

FIGURE 2 
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LEMMA 2. Let A1 be a rectilinear grid partition as described above. Then 

dim Sd(Ll) 

= (+ 2) +E [( d +1) 2( r + 1) + ((r-(d-2r)+ + 1)+)] 

(25) {(d 2) r 

-E d( 2 E [r+j-1-No(d-2r)]+- (2 ) 2 

Proof. Let us first consider the case when e = 1, where there are n1 E= - no 
interior edges that are not attached to the interior vertex A. In other words, there 
are ni polygonal components which do not contain A as a vertex so that the poly- 
nomial representations of any s E Sdr(L\l) on these components are not governed 
by the conformality condition at A. However, they are specified by the "smoothing 
cofactors" across the n1 edges (cf. [1]). Since the number of free parameters in each 
smoothing cofactor is (d-r+1) and the "super" smoothness requirement at both 
vertices of the corresponding edge induces 

2(jr l)-1((r-(d-2r)++l)+) 

linearly independent constraints (cf. the arguments in the derivation of (16) and 
the consideration of both cases (i) and (ii) in the proof of Lemma 1), we may 
conclude that the contribution to the dimension of Sdr(Al) from the components 
not attached to A is 

ni [(d-r+) -2 (r ) + ((r (d 2r)+ +1)+)] 

Adding this quantity to the quantity given in (13), which is of course the contri- 
bution to the dimension from the polygonal components attached to A, we have 
established (25) with E = 1. For E = 0, the proof is similar since the contribution 
to the dimension from one component is ( d+2 ) and the contribution from the other 
components is given by the number of free parameters allowed by the smoothing 
cofactors with constraints induced by the "super" smoothness requirement at the 
vertices. This completes the proof of Lemma 2. 

We now turn to the proof of Theorem 1. Following Schumaker [6], we will 
establish the lower bound formula in (5) by using mathematical induction. Recall 
that i\ is a rectilinear grid partition of a polygonal region Q. In view of Lemma 
2, we may assume that the number of interior vertices VI of i\ is at least 2. Let 
Ao be an interior vertex of i\ such that there exists at least one edge that connects 
Ao to a boundary vertex. Let ?1 be a closed polygonal subregion of Q with grid 
partition Al induced by i\ such that Ao is an interior vertex, and the only one, of 
Al and that the complement of the 01 with respect to Q is also a polygonal region. 
In addition, let Q be another closed polygonal subregion of Q with grid partition iL 
induced by i\ such that i\ has exactly VI -1 interior vertices with Ao as a boundary 
vertex and that the complement of Q with respect to Q is also a polygonal region. 
Let oo1 = fnQ flwith grid partition AO induced by i\. Note that (?,/ AO) has no 
interior vertex while (Q1, Al) has exactly one interior vertex as illustrated by the 
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two examples in Figure 2. Hence, the dimensions of Sd(AO,, 0) and S (Al,4Q?) 
are given by formula (25) with E = 0 and 1, respectively. Note that the three spline 
spaces Sd(z,& ), Sd(ll Q ?), and S (AO, 2) may be considered as subspaces of 
the original superspline space Sd (., Q) since each function in any of these spline 
spaces is the restriction of some function in Sd (L, Q). Consequently, 

sr( 1X 1?) Sdr (A, Q) n Sd (Al, i ) 
so that 

dim Sdr (, ?) > dim Sdr(, ) + dimSd ( 1 01) 

(26) - dim s (AO I 2Q). 

Let EI, Ej, and EO be the number of interior edges of A, Al, and AO, respec- 
tively. It can be verified that 

(27) EI = EI + EI -EI2. 

The proof of the lower bound result in (5) is therefore completed by applying 
the induction hypothesis to dini Sd(A,?) in (26), using the dimension formula in 
Lemma 2 with both E = 1 and 0, and appealing to (27). 

The proof of the upper bound result in (5) is exactly the same as for Theorem 
2.1 in Schumaker [7]. 

To prove Corollary 1, where A(' is an arbitrary type-1 triangulation of the 
rectangle OR, we order the interior vertices of A(') as follows: 

(xi, Y1), ... I (Xl Yn), (X2, Y1), (X2, Yn),... (Xm Y1) I *X(Xm Yn) 

so that ei > 3 for all i = 1,...,mn. Hence, for d > 3r+ 1, we have ((r+j+ 1) 
- e(d - 2r)) < 0 for j = r + 1,.. .,d - r, and this implies that N1 = 0 for all 
i = 1,... , mn; or Dr = 0. This establishes (9). 

For Corollary 2, where mn is an arbitrary type-2 triangulation of OR, we order 
the interior vertices as follows: 

(X(1-x1/2 iYu1- 1/2) ... * X (l1/2 Yn+1/2) + */*)X (xi, Y(), Y) I*X * Xl y 

(X1+ 1/2 iYl1-1/2) i.. * (Xl+1/2i Yn+1/2), * * *X (Xm, Y1), - I (Xm Wn) 

(Xm+1/2 Y1-1/2) . *. *, (Xm+1/2 Yn+1/2), 

where Xi+1/2 := (Xi +xi+1)/2 and Yj+1/2 := (Yj+yj+i)/2. Hence, if Ai = (Xp,,Yq,) 

where pi and qi are integers, then ji > 4, so that for d > [(8r+1)/3] we have Ni = 0. 
On the other hand, if Ai = (xp,+1/2, Yq2+1/2), then ei = ji = 2, so that Ni = N1. 
That is, for d > [(8r + 1)/3], the upper and lower bounds for Dr in (5) agree. 
Hence, the dimension formula in (10) follows from (4) by using (1). 

5. Proof of Theorem 2 and Its Consequences. The procedure in our proof 
of Theorem 2 is identical to that of Theorem 1 in [3] (cf. [1] for more detail). We start 
from any interior vertex that connects to a boundary vertex and apply Corollary 
1 to determine the contribution of the polygonal components around this interior 
vertex to dim Sdr(,). Then we go along this ray or crosscut to the other interior 
vertices that lie on this line consecutively to account for their contributions to the 
dimension. If this line happens to be a crosscut, the smoothing cofactor across the 
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final interior edge on this crosscut has an additional contribution to the dimension. 
The number of free parameters here is given by Ed in (6) which is of course the 
same as the dimension of the vector c' in (23). We next consider the second ray 
or crosscut and follow the same procedure. When all rays and crosscuts have been 
considered, we arrive at the dimension formula given by (8). This completes the 
proof of Theorem 2. To verify the dimension formulas in Corollaries 3 and 4, we 
simply apply Theorem 2 by counting the number of crosscuts and using ei = 1 = 3 
in Corollary 3 and ei = 1i = 2 or 4 in Corollary 4, respectively. 

6. Extensions. After the first draft of this paper was written, we learnt that 
Schumaker [8] has perfected the notion of supersplines by introducing the subspace 
Sd'P(A) of Sd (Ax) of functions which have all partial derivatives of order at least 
p at each vertex of i\. Note that Sdtr(A) - SS(L\) and Sr,2r(L) = S((A)). By 
a modification of the proofs in Sections 3, 4, and 5, the following results may be 
established. Let r < p < d and set 

d-p d-r 

(28) NiP : (r+j+1-jei)++ E (r + j + 1-(d-p)ei)+ 
j=p-r+1 j=1+max(d-p,p-r) 

and 

d-p d-r 

(29) NiP= E (r+j+1-jji)++ E (r + j + 1-(d-p)ji)+. 
j=p-r+1 j=1+max(d-p,p-r) 

THEOREM 3. For O < d < p, 

dim Sd(\)( 2+ 

Let 

r,P + [(d+2) d (+ 2) 

_E,[d 
- r + 

2 p -r+l) +((2p-r-d+l)+) 

d ( 2 p ( 2)] 

Then for d > p, 

VI VI 

(30) NP <DrP <ZNi. 
i=l i=l 

THEOREM 4. Let r < p < dy 
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and 

FXP (n) n [(dr+) -2 (P;+1) + ((2Pr;d+1)+)] 

d-p d-r 

+ , (r+j+1-jn)++ E (r+j+1-(d-p)n)+ 
j=p-r+1 j=1+max(d-p,p-r) 

- {(d+2) - (P+2)} 

Then for any quasi-crosscut partition Ac with L crosscuts and VI interior vertices, 

rIA 2c LEVr dim Sd 2(L/) = ) + LEd'P + E F' d(li). 
i=1 

7. Dimension Criterion. A closer investigation into the proof of Theorem 1 

in Section 4 not only yields a proof of Theorem 3 stated above but also gives a 

criterion which guarantees that the lower bound is indeed the actual dimension. To 

facilitate our presentation of this result, we need the following terminologies. 

Let Q' be any closed polygonal subregion of Q such that the boundary of ?' 

consists of edges of i\, and let ' be the rectilinear grid partition of Q' induced 

by A. Since each function in Sd'P (A', Q') is the restriction of some function in the 

original space Sd'P(A, Q), we may consider Sd'rP(A, ?') as a subspace of Sd ?) 
In the following (zA', Q') will be called a subgrid region of (Lx, ?2), and Sd'P(A', Q') 

the corresponding grid subspace of Sd'(P(A, ?). Any interior vertex of A' which can 

be connected by an edge of &' to a boundary vertex of i\' will be called a near- 

boundary interior vertex of A'. Suppose that Ao is a near-boundary interior vertex 

of A'. Then a subgrid region (A', ?') of (A', Q') will be called an AO-deleted subgrid 

region of (A', ?') if the following conditions are satisfied: 

(i) Ao is a boundary vertex of Al', 

(ii) the number of interior vertices of A' is one less than the number of interior 

vertices of A', and 

(iii) the complement of ?2' with respect to ?' is also a polygonal region. 

In addition, the subgrid region (A', ?2 ) of (A', Q') is called an Ao-subgrid region if 

the following conditions are satisfied: 

(i) Ao is an interior vertex of A , 

(ii) Ao is the only interior vertex of A', and 

(iii) the complement of ?l' with respect to ?2' is also a polygonal region. 

The idea of considering subgrid regions (A', ?') and (A', ?2) originates from the 

induction proof in Schumaker [6]. We have the following result. 

THEOREM 5. Let A be an arbitrary rectilinear grid partition of a closed polyg- 
onal region ?2 with VI interior vertices where VI > 0, and let 0 < r < p < d. 
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Then 

dim r, P (A X) 

(3)> d( 2 ) +Ei [d r+1) _2 (P-r + 1 + ((2p-r-d+l)+) 
(31)2222 

-VI - 
(2P 2 )J +E N. 

Furthermore, equality holds if and only if for every subgrid region (A', Q') of (Lx, ?) 
with at least one interior vertex and any AO-deleted subgrid region (A', Q') and 
the corresponding AO-subgrid region (A,Q2) of (&,?'), where Ao is any near- 
boundary interior vertex of &', the identity 

(32) Sd'p (&, ?Q2) = Sd'p(& , ? 2) + Sd '(i\?Q1) 

is satisfied, where the usual sum of two vector spaces is considered. 

Of course, (31) is only a reformulation of (30). We remark, however, that when 
the degree d is relatively large compared to the order of smoothness r (e.g. d > 
3r + 2), the smoothness conditions in terms of Bezier nets can be "disentangled" so 
that the two grid subspaces on the right of (32) can be understood, and it is then 
feasible to apply condition (32) to study the geometry of the grid i\ in determining 
the dimension of the superspline subspaces SdPr(A, Q), and particularly the original 
spline space Sd(A, Q) = Sd (A'Q) 
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